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Abstract. Given a rank 2 holomorphic vector bundle E over a projec-
tive surface, we explain some relationships between the Gieseker stabil-
ity of E and the Chow, Hilbert and K-stability of the polarized ruled
manifold PE with respect to polarizations that make fibres sufficiently
small.

In this paper, we pursue our study of the G.I.T stability of ruled manifolds
given as projectivisation of rank 2 vector bundles over projective surfaces.
The purpose of this note is to observe that the notion of Gieseker stability
for the underlying vector bundle plays a key role in the Chow, Hilbert and
K-stability of the associated ruled threefold when the first Chern class of the
base is proportional to the considered polarization. This has to be compared
with the simpler case of ruled manifolds over a curve where the notion of
Mumford stability is central, and we refer to [1, 3] on this topic. We want to
point that checking stability algebraically is a difficult problem. Our proofs
rely mainly on two ingredients. One is coming from geometric analysis
with the connection between existence of canonical Kähler metrics (namely
Kähler metrics with constant scalar curvature) and stability notions. The
other one is a brute force computation of the G.I.T weights for certain
test configurations associated to the deformation to the normal cone of the
projectivisation of a subbundle. These ingredients have appeared in [11]
but in this paper we are carrying the computations to a greater extent and
draw some simple and natural consequences from them. In particular we
provide some new examples of asymptotically Hilbert or Chow semistable
polarizations that are not asymptotically Hilbert or Chow stable.

1. About Chow stability, Hilbert stability and K-stability

In this section, we recall briefly some well known facts about Chow sta-
bility and K-stability of a polarized scheme. We refer to [16, 21, 7, 6] for
details and examples.
Consider (X,L) a polarized subscheme of complex dimension n and X ⊂
PH0(X,Lk)∗ = PV the closed immersion associated to the complete linear
system |Lk|. Let ZX = {P ∈ Gr(V, n− 1) : P ∩X 6= ∅} which is a divisor of
degree d = degL in the Grassmannian G = Gr(V, n− 1). Thus there exists
sX,V ∈ H0(G,OG′(d)), such that one has ZX = {sX,V = 0} and this induces
a Chow point

Chow(X) = [sX,V ] ∈ PH0(G,OG′(d))

on which one can consider the action of SL(V ). The polarized scheme
(X,Lk) is said to be Chow stable (resp. Chow semistable) if the Chow
point Chow(X) is G.I.T stable (resp. G.I.T semistable).
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We say that it is asymptotically Chow stable (resp. asymptotically Chow
semistable) if (X,Lk) is Chow stable (resp. Chow semistable) for k � 1.

Let us discuss now Hilbert stability. For X ⊂ PV a closed subscheme
such that the restriction map

ρ : H0(PV,O(m))→ H0(X,O(m))

is surjective, one sets

Wm =

h0(X,O(m)∧
H0(PV,O(m))∨.

Thus, from the map ρ and taking the wedge product, one can consider the
m-Hilbert point

[X]m =
[ h0(X,O(m)∧

H0(PV,O(m))→
h0(X,O(m)∧

H0(X,O(m))] ∈ P(Wm).

The polarized scheme (X,Lk) is said to be Hilbert stable (resp. Hilbert
semistable) if the induced m-Hilbert points X ∈ PH0(X,Lk) defined by the
closed immersion associated to the complete linear system |Lk| are all G.I.T
semistable (resp. G.I.T stable) for m� 1.
The polarized scheme (X,L) is said to be asymptotically Hilbert stable (resp.
asymptotically Hilbert semistable) if (X,Lk) is Hilbert stable (resp. Hilbert
semistable) for k � 1.

We recall now the notion of test configuration [5, 6].

Definition 1. A test configuration for a polarized scheme (X,L) is a po-
larized scheme (X ,L) with:

• a C× action and a proper flat morphism π : X → C which is C×
equivariant for the usual action on C,
• a C× equivariant line bundle L → X which is ample over all fibers

of π such that for z 6= 0, (X,Ls) is isomorphic to (Xz,LXz) for some
positive integer s, called the exponent.

A product test configuration is a test configuration with X ' X×C. A test
configuration is trivial in codimension 2 if it is C×-equivariantly isomorphic
to a product test configuration X × C, with trivial C×-action, away from a
closed subscheme of codimension at least 2.

From [18], we know that there is a correspondence between the data of
a test configuration (X ,L) of exponent s and the data of a 1-parameter
subgroup of GL(H0(X,Ls)). Thus using the Hilbert-Mumford criterion, it
is sufficient to consider the weights of the C× action to check the stability
of (X,L). More precisely, let us call w(Ks) the total weight of the induced
action on π∗LK|0 = H0

X0
(LK) for K � 0, for a test configuration associated

to (X,LKs). Remark that w(Ks) is a polynomial of degree n + 1 in the
k = Ks variable. Let us denote P (k) = dimH0(X,Lk) which is equal to
the Hilbert polynomial χ(X,Lk) for k large. The normalized weight after
taking the sP (s)-th power of the C× action on π∗LK|0 is

(1) w̃(s, k) = w(k)sP (s)− w(s)kP (k)

which is a polynomial of degree n + 1 in the k variable. It is the Hilbert
weight of (X,Ls) and thus (X,L) is asymptotically Hilbert stable (resp.
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asymptotically Hilbert semistable) if and only if w̃(s, k) > 0 (resp. w̃(s, k) ≥
0) for all k � 1 (k > k0(s) large enough), s� 1.

One can decompose w̃(s, k) as

(2) w̃(s, k) =

n+1∑
i=0

eik
i

where ei =
∑n+1

j=0 ei,js
j are polynomials of degree n+1 in the s variable with

en+1,n+1 = 0 due to the normalisation.
We refer to [16, Lemma 2.11] and [18, Theorem 3.9] for a proof of the

next result.

Lemma 1. The coefficient en+1(s)s
n+1(n+ 1)! is the Chow weight of X ⊂

PH0(X,Ls). In particular, (X,L) is asymptotically Chow stable (resp.
asymptotically Chow semistable) if and only if en+1(s) > 0 (resp. ≥ 0)
for all s� 1. It is said to be asymptotically Chow polystable if it is asymp-
totically Chow semistable and any not strictly stable test configuration is a
product test configuration.

The following definition is a refinement of Donaldson’s definition of K-
stability [6] and is due to Stoppa [20].

Definition 2. The polarized variety (X,L) is K-stable (resp. K-semistable)
if for any test configuration which is non trivial in codimension 2, the leading
coefficient en+1,n of en+1(s) is positive (resp. ≥ 0). It is said to be K-
polystable if it is K-semistable and any not strictly stable test configuration
is a product test configuration.

Let us finish this section by recalling certain well-known relationships
between the various notions of stability that we shall use later (see [21, 13]):

Asymptotic Chow stability ⇔ Asymptotic Hilbert stability ⇒ Asymptotic
Hilbert semistability ⇒ Asymptotic Chow semistability ⇒ K-semistability.

2. Rank 2 vector bundles over surfaces and the stability of
their projectivisation

Let us fix B a projective surface polarized by L and π : E → B an in-
decomposable holomorphic vector bundle on B. We shall compute in our
setting the Donaldson-Futaki invariant F1(T ) induced by the degeneration
T to the normal cone of P(F ) where F is a subbundle of E and with respect
to the polarization Lr,m. Let us give now some explanations on this compu-
tation (we refer to [17, 11] for details of the test configuration we construct).
We consider the family of bundles E → B × C → C with general fibre E
and central fibre F ⊕G over 0 ∈ C where G is the quotient bundle. Then E
admits a C∗ action that covers the usual action on the base C, and whose
restriction to F ⊕ G scales the fibres of F with weight 1 and acts trivially
on G. Setting X = P(E)→ C and

Lr,m = OP(E)(r)⊗ π∗Lm

with (r,m) such that Lr,m is ample, we obtain a flat family of polarized
varieties with C∗ action whose general fibre is the polarized ruled manifold
(PE,Lr,m). It is a non trivial test configuration that we shall denote by T .
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Conventions: If π : E → B is a vector bundle then π : P(E)→ B shall de-
note the space of complex hyperplanes in the fibres of E. Thus π∗OP(E)(r) =
SrE for r ≥ 0.

Notation 1. For L a line bundle (not necessarily ample) and F a coherent
subsheaf over B, one can define the slope of F by the normalised degree of
F , i.e

µL(F) =
degL(F)

rk(F)
=
c1(L)c1(F)

rk(F)
,

and the normalised Hilbert polynomial by

PF (k) =
χ(F ⊗ Lk)

rk(F)
.

We recall some well known definitions about stability of bundles.

Definition 3. Let L be an ample line bundle on the projective manifold B.
A vector bundle E is said to be L-Mumford-Takemoto stable if for any proper
coherent subsheaf F of E one has the slope inequality µL(F) < µL(E).
We say that E is Gieseker stable (resp Gieseker semistable) with respect to L
if for all proper coherent subsheaves F ⊂ E one has the following inequality
for the normalized Hilbert polynomials

PF (k) < PE(k) for k � 0 (resp. ≤ ),

and strictly Gieseker semistability E is Gieseker semistable but not Gieseker
stable. A Gieseker semistable bundle is said to be Gieseker polystable if it is
a direct sum of Gieseker stable bundles with respect to the same polarization.

These stability notions are related; using that µL(F ) is the leading order
term in k of PF (k) one sees immediately that

Mumford
stable

⇒ Gieseker
stable

⇒ Gieseker
semistable

⇒ Mumford
semistable

.

For simplicity we will work in the sequel of the paper with rank 2 vector
bundles over surfaces.

Notation 2. Let us assume that the vector bundle E has rank rk(E) = 2
and B is a surface. We set

δL = µL(E)− µL(F )

∆ =
ch2(E)

2
− ch2(F ) +

1

2
δK∗B

so that one can write PE(k)− PF (k) = kδL + ∆.

In the following proposition, we express the Donaldson-Futaki invariant
for the polarization Lr,m associated to the test configuration we have just
described.

Proposition 1. The Donaldson-Futaki invariant of the test configuration
T for a rank 2 vector bundle E over a polarized surface (B,L) induced by
the deformation to the normal cone of PF where F is a subbundle of E is
given by

F1(T ) =
r6

36
(δK∗B )2 − r4

72
Γ1δK∗B +

r3

24
Γ2 (mδL + r∆) ,
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with

Γ1 = r2(c1(E)2 − 4c1(F )2) + 3c1(F
r ⊗ Lm)2 + 4r2∆ + 12rmδL

−3rc1(B)c1(F
r ⊗ Lm),

Γ2 = (rc1(E) + 2mc1(L))2 − 2rc1(F
r ⊗ Lm)c1(B).

Proof. The proposition is a consequence of [11, Proposition 19 - Corollary
21] where it is proved by a direct computation that

(3) e4,3(T ) = F1(T ) = C1r
3m3 + C2r

4m2 + C3r
5m+ C4r

6

where

C1(E,F ) =
c1(L)2

6
(µL(E)− µL(F )) ,

C2(E,F ) =
c1(L)2

48
(c1(E)− 2c1(F ))c1(B)

+
c1(L)2

12
(ch2(E)− 2ch2(F ))

+
1

12
(2c1(E)c1(L)− c1(B)c1(L)) (µL(E)− µL(F )),

C3(E,F ) = − 1

12
degL(E)c1(F )2 +

1

12
degL(E)ch2(E)

+
1

48
degL(E)c1(E)2 − 1

24
degL(F )c1(E)2

+
1

24
c1(L)c1(B) · c1(F )2 − 1

24
c1(L)c1(B) · ch2(E)

+
1

24
degL(F )c1(E)c1(B)− 1

24
degL(E)c1(B)c1(F ),

C4(E,F ) =
1

288
c1(E)2 · c1(B)c1(E)− 1

144
c1(E)2 · c1(B)c1(F )

+
1

48
c1(F )2 · c1(E)c1(B)− 1

72
(c1(B)c1(F ) + c1(E)c1(B)) ch2(E)

+
1

48
c1(E)2

(
ch2(E)− c1(F )2

)
.

By a simple algebraic manipulation one obtains from (3) the expected result.
�

Proposition 2. In the same setting as in Proposition 1 and with Notations
2, the Chow weight associated to the test configuration T is given by

Chows(T ) = e4(s) =
sr4 (rs− 1) (rs+ 1)

36
δK∗B

2

− sr2 (rs+ 1)

72
A1δK∗B

+
sr2 (rs+ 1)

24
A2 (mδL + r∆)

with

A1 = srΓ1 −A′1
A2 = sΓ2 − 4rTodd2(B).
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where we set A′1 = Γ1 + 3c1(F
r⊗Lm)2 + 3rc1(B)c1(F

r⊗Lm) + 6Todd2(B).
Moreover,

Chows = s3F1 + s2F2 + sF3

with higher Futaki invariants F2, F3 given by

F2 =

(
1

r
F1 + rF3

)
,

F3 = − 1

36
r4δK∗B

2 +
1

72
r2A′1δK∗B −

1

6
r3Todd2(B) (mδL + r∆) ,

with Todd2(B) the second Todd class of B.

Proof. Writing the weigth of the action as w(s) =
∑n+1

l=0 bls
n+1−l and P (s) =

dimH0(PE,Lsr,m) =
∑n

l=0 als
n−l with n = 3 and s large enough (see Section

1), we get

e4(s) =
3∑

l=1

(b0al − a0bl)s4−l − a0b4.

In the case we are considering, we have

a0 =
1

2
rm2c1(L)2 +

1

2
mr2 degL(E) +

1

6
r3ch2(E) +

1

12
r3c1(E)2,

a1 =
r2

4
c1(E)c1(B) +

m2

2
c1(L)2 +

rm

2
(c1(L)c1(B) + degL(E)) +

r2

2
ch2(E),

a2 =− r

12
c1(E)2 + rTodd2(B) +

r

4
c1(E)c1(B) +

m

2
c1(L)c1(B) +

r

3
ch2(E),

a3 =Todd2(B),

and

b0 =
r4

24
c1(E)2 +

r4

12
c1(F )2 +

m2r2

4
c1(L)2 +

mr3

6
(degL(E) + degL(F )),

b1 =
r3

4
c1(F )2 +

r3

12
c1(F )c1(B) +

r3

12
c1(E)c1(B) +

rm2

4
c1(L)2

+
mr2

4
(c1(L)c1(B) + 2 degL(F )),

b2 =
r2

2
Todd2(B) +

r2

6
c1(F )2 − r2

24
c1(E)2 +

r2

4
c1(F )c1(B)

+
rm

3
degL(F )− rm

6
degL(E) +

rm

4
c1(L)c1(B),

b3 =
r

2
Todd2(B) +

r

6
c1(F )c1(B)− r

12
c1(E)c1(B),

b4 =0.

We refer to [11, Proposition 20] and [3] for the details of computing the terms
al, bl where most of them have been explicitly identified using Hirzebruch-
Riemann-Roch theorem.

�

We dress now some easy consequences of the two previous results. We
get the following theorem which strengthens [11, Proposition 21].

Theorem 1. Consider E an irreducible rank 2 holomorphic vector bundle
on a polarized surface (B,L) with c1(B) proportional to c1(L).
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(1) Assume that E is strictly Gieseker semistable and F is a subbundle
of E with PF = PE with respect to L. Then all the tensor pow-
ers of the polarization Lr,m are not Chow polystable, Lr,m is not
asymptotically Chow polystable and not K-polystable.

(2) Assume that E is not Gieseker semistable and F is a destabilizing
subbundle. Then Lr,m is not K-semistable and thus not asymptoti-
cally Chow semistable for m� 0.

(3) If Lr,m is K-stable (resp. K-polystable, resp. K-semistable) for all
m � 0 then E is Gieseker stable (resp. Gieseker polystable, resp.
strictly Gieseker semistable) with respect to L.

Proof. For (1), we consider the test configuration T of the deformation to
the normal cone of PF described as before. From our assumption of Gieseker
semistability we have δL = ∆ = 0 while the assumption on the first Chern
class gives δK∗B = 0 since c1(B) = 0 or c1(B) = λc1(L). Therefore from

Propositions 1 and 2, one has F1(T ) = Chows(T ) = 0 while the test config-
uration T is not a product test configuration. The point (2) can be treated
in a similar way using the proof of Proposition 1. Actually the destabilizing
subbundle leads to C1 = 0 and C2 < 0 or C1 < 0 and thus F1(T ) < 0. Re-
mark that (2) strengthens a result of [17, Theorem 5.12] where it is shown
that if E is not Mumford stable then Lr,m is not K-semistable.
Note that under the assumptions of (1) or (2), there is no Kähler metric
with constant scalar curvature in the class [c1(Lr,m)] as a consequence of
[14, 19, 4].
Now let us assume that Lr,m is K-stable. Then C1 ≥ 0 in the proof of
Proposition 1 for all subbundles F of E. If the inequality is strict for any
subbundle then E is Mumford stable. Actually, for a rank 2 bundle over a
surface, it is sufficient to test stability with respect to subbundles. For any
rank 1 torsion free subsheaf F of E, F∗∗ is a reflexive rank 1 sheaf on the
surface B and thus a line bundle. Now, if C1 = 0 for a subbundle F of E,
one has necessarily C2 ≥ 0. If C2 > 0 then PE > PF . Now given F rank 1
torsion free subsheaf of E, one has F = F ⊗I where F is a line bundle and
I is an ideal sheaf with 0-dimensional support, the inequality PE > PF only
improves if F is replaced by F since c2(F) is the length of the support of I
and thus is non-negative. Eventually if the inequality C2 > 0 holds for all
subbundles of E, then we have obtained that E is Gieseker stable. Consider
now that C2 = 0. Then we have δL = δK∗B = ∆ = 0 and by Proposition 1,

F1(T ) vanishes. But the test configuration is not trivial so this leads to a
contradiction. Therefore one has necessarily C2 > 0 and we obtain Gieseker
stability. The case of K-semistability is obtained by contraposition of (2).
In the case of K-polystability, the only case for which C2 = 0 is when the
rank 2 bundle E splits as a direct sum of two line bundles of same slope so is
necessarily Mumford polystable. Since C3 ≥ 0, one has moreover Gieseker
semistability. �

Remark that the case of K-unstability in (3) cannot be included since the
base manifold B may be K-unstable which would induce a destabilizing test
configuration for the projectivisation PE.
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Non simple semi-homogeneous rank 2 vector bundles over an abelian sur-
face are Gieseker semistable and thus provide concrete examples of applica-
tions of our theorem, see [15, Section 6].

Conjecture 1. Consider E an irreducible rank 2 holomorphic vector bundle
on a K-stable polarized surface (B,L) with c1(B) proportional to c1(L).
For m � 0, the polarization Lr,m is K-stable (resp. K-polystable, resp.
K-semistable) if and only E is Gieseker stable (resp. Gieseker polystable,
resp. Gieseker semistable).

The conjecture is wrong if one removes the assumption on the first Chern
class of B: in [11] it is constructed an example of a Gieseker stable bundle
with L1,m not K-semistable for m� 0. The hard sense of the conjecture is
true under stronger assumption: on a surface with a constant scalar curva-
ture Kähler metric and no non trivial holomorphic vector field, a Mumford
stable bundle gives rise to a polarization Lr,m that admits a constant scalar
curvature Kähler metric and thus is K-stable, see [8, 9, 10].

One can now wonder when the Futaki invariant as computed in Proposi-
tion 1 may vanish. We cannot say much for a fixed couple (r,m) but at the
fiber or base limit we obtain the following result.

Proposition 3. Let (B,L) be a polarized surface such that its first Chern
class satisfies c1(B) = 0 or c1(B)c1(L) 6= 0 and E a rank 2 holomorphic
vector bundle on B. Then, for the test configuration as in Proposition 1,

• the Futaki invariant F1(T ) vanishes for all m � 0 (or all r � 0) if
and only if the Chow weight Chows(T ) vanishes for all m � 0 and
any fixed s > 0 (or all r � 0 and s� 0).
• the Futaki invariant F1(T ) is positive for all m � 0 if and only if

the Chow weight Chows(T ) is positive for all m� 0 and s� 0.

Proof. This comes from the computations of the Futaki invariant and Chow
weight. Imposing C1 = C2 = C3 = 0 in Proposition 1 implies firstly that
δL = 0, then ∆ = 1

4δK∗B and finally δK∗Bc1(L)c1(B) = 0. Under our assump-
tions one gets in all the cases

(4) δL = δK∗B = ∆ = 0.

This forces obviously the Chow weight to vanish, see Proposition 2.
Conversely, if the Chow weight vanishes seen as a polynomial in the variables
m, one gets from Proposition 2 that ∆ = kr−2

4kr δK∗B and δK∗Bc1(L)c1(B) =

0 and thus (4) holds which implies the vanishing of the Futaki invariant.
Computations in the variables r are similar but slightly more involved. The
second part of the result is using the same reasoning. �

Next we compute the Hilbert weight for the test configuration T for the
deformation to the normal cone of PF where F is a subbundle of E. We
remark that the Hilbert weight has a similar expression to the Chow weight
and the Futaki invariant.
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Proposition 4. In the same setting as in Proposition 1 and with Notations
2, the Hilbert weight associated to the test configuration T is given by

Hilbs,k(T ) =
r(rs− 1)(rk + 1)

36
β1(s, r)δ

2
K∗B

+
1

72
(β1(s, r)B1 − β2(s, r)A1)δK∗B

+

(
β2(s, r)

24
A2 −

(rk + 2)β1(s, r)

6
Todd2(B)

)
(mδL + r∆)

with β1(s, r) = rks(rs+1)(k−s)(rk+1), β2(s, r) = rs3(rs+1)2(k−s), and

B1 =kr2(c1(E)2 + 2c1(F )2 + 4∆ + 6Todd2(B))

+ 6krm degL(E) + 6km2c1(L)2

+ r(−c1(E)2 + 6Todd2(B) + 8∆ + 6c1(F )c1(B) + 4c1(F )2)

+ 6mc1(L)c1(B)

Proof. The result is obtained by a computation of the weight Hilbs,k(T ) =
w̃(s, k) using (1) and the computations of ai, bi in Proposition 2. �

Proposition 3 can also be extended to Hilbert weights. We have also
another obvious consequence.

Proposition 5. In the same setting as in Proposition 1, let us assume that
c1(B) = 0. Then the Chow weight Chows(T ) and the Hilbert weight Hilbs,k

are proportional to the Futaki invariant F1(T ), and have same sign when
one takes k, s > 0 large enough.

Proof. This comes from the fact that when c1(B) = 0 one has δK∗B = 0 and
both quantities Γ2 and A2 do not depend on the bundle F . �

3. Strictly semistable examples

Inspired from [2], we construct a new example of a threefold which is
Asymptotically Chow semistable and not Asymptotically Chow stable.

Let (B,L) be a polarized surface such that c1(L) admits a Kähler metric
with constant scalar curvature and Aut(B,L)/C× is trivial and assume that
the torus Pic0(B) = H1(B,O)/H1(B,Z) parametrizing line bundles with
trivial first Chern class is not trivial. Consider E0 = G1 ⊕G2 a direct sum
of two line bundles with c1(G1) = c1(G2) over B. Then E0 is Mumford
polystable. On the polarized ruled manifold

(X0,L0r,m) = (PE0,OPE0(r)⊗ π∗0Lm)

there exists under our assumptions a Kähler metric with constant scalar
curvature for all m � 0. Actually, the Futaki character associated to the
Lie algebra Lie(Aut(E0)/C×) vanishes thanks to Proposition 1, and one can
apply [9, Corollary B]. Therefore, (X0,L0r,m) is K-polystable for all m � 0
from the work of Donaldson, Stoppa and Mabuchi [14, 19, 4].
Next, we do a small deformation of the trivial line bundle T0 = C × B in
order to obtain a line bundle T over B such that T 2 is non trivial. We can
consider the following induced extension

(5) 0→ G1 ⊗ T → E → G2 ⊗ T ∗ → 0.
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Using Riemann-Roch formula we have h0(B,G1 ⊗ G∗2 ⊗ T 2) − h1(B,G1 ⊗
G∗2⊗T 2) +h2(B,G1⊗G∗2⊗T 2) = Todd2(B) since c1(G1) = c1(G2). Now, if
we assume Todd2(B) < 0, the space Ext1(G2 ⊗ T ∗, G1 ⊗ T ) = H1(B,G1 ⊗
G∗2 ⊗ T 2) has positive dimension and our extension (5) does not split. The
ruled manifold

(X,Lr,m) = (PE,OPE(r)⊗ π∗Lm)

is not K-polystable for m � 0. Actually for the choice F = G1 ⊗ T one
checks that the Futaki invariant F1(T ) associated to the test configuration
to the normal cone of PF vanishes for m � 0. Furthemore one obtains
δL = δK∗B = ∆ = 0. These relationships impose that the Chow weight

Chows vanishes by Proposition 2. Therefore, (X,Lr,m) cannot be asymp-
totically Chow stable.
On another hand, from the fact that all the higher Futaki invariants F2, F3

vanish simultaneously we can apply Mabuchi’s main result in [12] (see also
[3, Proposition 3.2, Theorem 3.5]). One concludes that (X0,L0r,m) is asymp-
totically Chow polystable. By openness of the semistability condition in
GIT, its small deformations are asymptotically Chow semistable and conse-
quently (X,Lr,m) is asymptotically Chow semistable.
Finally, in order to construct base manifolds that satisfy the assumptions as
above, it is sufficient to consider for B a ruled surface as the projectivisation
of a rank 2 Mumford stable bundle over a curve of genus > 1, see [11]. We
have proved the following result.

Corollary 1. There are some ruled threefolds (projectivisation of rank 2
bundles over a surface endowed with a constant scalar curvature Kähler
metric) that are asymptotically Chow semistable, but not asymptotically
Chow stable.

One can also compare Corollary 1 with [22, Section 5] where other exam-
ples of non asymptotically Chow stable threefolds are discussed.

Since (X0,L0r,m) is asymptotically Chow polystable, for the test configura-
tions that have positive Chow weight asymptotically, the main result of [13]
shows that they have also positive Hilbert weight asymptotically. Thanks to
our assumptions on B, the product test configurations that have vanishing
Chow weight Chows for s� 0 are associated to the splitting of E0 and the
deformation to the normal cone of PG1 or PG2. Thus one gets in both case
for m � 0 that δL = ∆ = δK∗B = 0. Proposition 4 shows that the Hilbert

weight also vanishes. Consequently, (X0,L0r,m) is asymptotically Hilbert
polystable and thus its small deformation (X,Lr,m) is also asymptotically
Hilbert semistable. On another hand, considering the subbundle F = G1⊗T
of E, one has for the test configuration associated to the deformation to the
normal cone of PF that δL = δK∗B = ∆ = 0 and so Hilbs,k = 0 for all s, k.

Finally, (X,Lr,m) for m � 0 cannot be asymptotically Hilbert stable since
T is not a product test configuration.

Corollary 2. There are some ruled threefolds (projectivisation of rank 2
bundles over a surface endowed with a constant scalar curvature Kähler
metric) that are asymptotically Hilbert semistable, but not asymptotically
Hilbert stable.



CHOW, HILBERT AND K-STABILITY OF RULED THREEFOLDS 11

Note that using [3, Proposition 4.1 and Corollary 4.4] our reasoning could
also be applied to the case of Mumford semistable vector bundle over a curve
of genus ≥ 2 to produce other similar examples to Corollaries 1 and 2. This
will be discussed in more details in a forthcoming paper since one can be a
little bit more precise in dimension one. For instance the following conjecture
is true if the base manifold is a curve of genus g > 1.

Conjecture 2. Consider E a holomorphic vector bundle on a base manifold
B polarized by L with c1(B) = 0 or c1(B)c1(L) 6= 0. Then for m � 0, the
following assertions are equivalent:

• the polarization Lr,m on PE is asymptotically Hilbert semistable,
• the polarization Lr,m on PE is asymptotically Chow semistable,
• the polarization Lr,m on PE is K-semistable.
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