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1 Introduction

The celebrated Kobayashi-Hitchin correspondance asserts that a holomor-
phic vector bundle over a projective manifold is Mumford polystable if and
only if it can be equipped with a Hermitian-Einstein metric on it. The “easy”
sense of this correspondance is the implication existence of a Hermitian-
Einstein metric ⇒ Mumford stability. It has been proved in the Ph.D thesis
of M. Lübke [Lub] and we refer to [LT, Th] as surveys on this correspondance
and the notion of stabilities that we shall mention.

In the world of smooth projective manifolds, it is expected (Conjecture
of Yau-Tian-Donaldson [Do1, Ya1, Ya2]) that a similar correspondence holds
between K-stability and the existence of a constant scalar curvature metric.
In [RT1, RT2], it is introduced a notion of slope stability (derived as a
special case from the notion of K-stability) for a couple (M,L) where M is
a manifold and L a polarization. We expect that a proof of the “easy” sense
of the correspondance could be given in this context using the extra-notion
of Bergman kernel. This idea is inspired by our new proof of Lübke’s result
using the asymptotic for higher tensor powers Lk of the Bergman kernel.
We introduce the notion of Bergman kernel vanishing on a divisor and study
its behavior when k tends to infinity. Asymptotically this Bergman kernel
behaves as a characteristic function of a certain canonical set, that we call
the non-vanishing set. The complement of this set is a certain neighborhood
of the divisor whose volume is given by the Riemann-Roch formula. Finally
we give a proof of the “easy” sense of the correspondence for some simple
cases.

2 The case of vector bundles and the Mumford
stability

For any Kähler metric g on a manifold, we let ω =
√−1
2π gij̄(z)dzidz̄j denote

its corresponding Kähler form, a closed positive (1,1)-form. Now, let M
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be smooth projective manifold of complex dimension n, (L, hL) an ample
hermitian line bundle onM and we denote ω = −

√−1
2π ∂∂̄ log hL the curvature

of hL. Let E be a hermitian holomorphic vector bundle of rank rE on M .
We denote Nk = dimH0(M,E ⊗ Lk).

Definition 2.1. Fix a smooth hermitian metric hE ∈ Met(E) on E, and
define the L2-inner product on C∞(M,E ⊗ Lk),

∫

M
hE ⊗ hkL(., .)

ωn

n!
.

Let (Si)i=1,..,Nk
be an orthonormal basis of H0(M,E ⊗ Lk) with respect to

this L2 inner product. We define the Bergman kernel (also called Bergman
function in the litterature) of E ⊗ Lk as

BhE⊗hk
L
(p) =

Nk∑

i=1

Si(p)Si(p)? ∈ End(E ⊗ Lk)|p

where p ∈M . This is independent of the choice of the basis.

This can be seen as the restriction over the diagonal of M ×M of

BhE⊗hk
L
(p, q) =

Nk∑

i=1

Si(p)〈Si(q), .〉hE⊗hk
L
∈ End(E ⊗ Lk)

which is the kernel of the natural L2-projection πhol from the space of smooth
sections C∞(M,E⊗Lk) to the space of holomorphic sectionsH0(M,E⊗Lk),
i.e

πhol(s)(p) =
∫

M
BhE⊗hk

L
(p, q)s(q)

ωn

n!
.

We note Lω the natural contraction of (1, 1) type associated to the Kähler
metric, Lωu = ω ∧ u and Λω := L∗ω the adjoint operator. When k tends to
infinity, one obtains1 the asymptotic for BhE⊗hk

L
, given by

BhE⊗hk
L

= knId+ kn−1

(
1
2
scal(ω)Id+ ΛωFhE

)
+O(kn−2)

where scal(ω) stands for the scalar curvature of the Riemannian metric g
associated to ω and FhE

for the curvature of hE . This asymptotic is actu-
ally uniform in C∞ sense. Note that the integrals of the first two terms of
the asymptotic are given by the Riemann-Roch formula. This asymptotic
expansion is the key argument of our heuristic proof of the implication ex-
istence of a Hermitian-Einstein metric ⇒ Mumford semi-stability that we
describe now.

1See [DLM, Ke, Wa] for the computation of the terms and [Ca] for the existence of
such an asymptotic in k.
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Proposition 2.1. Let E be a holomorphic vector bundle over the projective
manifold (M,L). Assume that there exists a ω-Hermitian-Einstein metric
hHE on E. Then E is semi-stable in the sense of Mumford.

Proof. Let F be a coherent subsheaf of E of rank 0 < rF < rE . Without loss
of generality we can assume that F is reflexive i.e torsion free and normal.
We know that F is a subbundle of E outside a Zariski open part of M .
Moreover, it is non locally free on a set S of points with codim(S) ≥ 3.
Now, from the asymptotic result described previously,

BhHE⊗hk
L

= knId+ kn−1

(
µ(E)

V olL(M)
+

1
2
scal(ω)

)
Id+O(kn−2) ∈ End(E)

where µ(E) = degL(E)
rE

is the slope of E and degL(E) is the degree of E
with respect to L. As H0(M,F ⊗ Lk) ⊂ H0(M,E ⊗ Lk), one obtains by
projecting over M\S and the subbundle F|M\S that pointwisely for any k
sufficiently large,

knIdF+kn−1

(
µ(E) +

1
2
scal(ω)

)
IdF+Q+O(kn−2) = BhHE |F⊗hk

L
∈ End(F)

where Q is a positive auto-adjoint operator. Taking the trace, one gets
directly by integration,

knV olL(M)rF + kn−1

(
µ(E) +

1
2

∫

M
c1(M)

c1(L)n−1

(n− 1)!

)
rF

≥ h0(M,F ⊗ Lk) +O(kn−2).

Now, for any k sufficiently large, the Riemann-Roch formula leads to

knV olL(M)rF + kn−1µ(E)rF ≥ knV olL(M)rF + kn−1deg(F) +O(kn−2)

and thus
µ(E) ≥ deg(F)

rF
= µ(F).

Hence E is Mumford semi-stable.

3 The notion of Bergman kernel vanishing along
a divisor

3.1 Non vanishing sets

Let (L, hL) a hermitian ample line bundle on the Kähler manifold (M,ω)
and D a smooth divisor. Let’s assume that ω = c1(hL), i.e that ω is the
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curvature of (L, hL). Let ε(L,D) be the Seshadri constant of D with respect
to L [De1]. By definition,

ε(L,D) = sup{c : L(−cD) is ample on the blow up M̃ of M along D}.

By analogy with the case of Bergman kernel for subbundles, we consider
the restriction over the diagonal of the integral kernel of the projection from
the smooth sections of Lk vanishing at order ck on D onto the space of
holomorphic sections H0(Lk(−ckD)), i.e

B̃h(p) = B̃h,k,ω,D,M,L,c(p) =
h0(Lk(−ckD))∑

i=1

|Si(p)|2hk

for a point p ∈M . Here (Si)i is an orthonormal basis of H0(Lk(−ckD)) for
the inner product

∫
M hk(., .)dV with dV = ωn

n! and hk = h⊗k
L is the induced

metric from hL on Lk (we see Si as an element of H0(Lk)). We denote
by ||.||hk

the L2 norm associated to this inner product and we notice by
Riemann-Roch theorem that

N = h0(Lk(−ckD)) = kn
∫

M̃
c1(L(−cD))n + ...

Remark 3.1. Considering the operator norm of the composition of the pro-
jection π : L2(M,Lk − ckD) → H0(M,Lk − ckD) with the evaluation fiber-
wise evp, on gets that for p ∈M ,

B̃h(p) = |||evp ◦ π|||2 = sup
s∈H0(Lk(−ckD))

|s(p)|2hk

||s||2hk

.

An element realizing this extremum will be said to represent the Bergman
kernel at the point p (or to be extremal at p), and is unique up to a complex
constant of unit norm.

We are interested to find the asymptotic outside of D of B̃ when k tends
to infinity.

Definition 3.1. We define the nonvanishing set of the Bergman kernel as

NVc = {x ∈M :
B̃(x)
N

converges when k →∞ and its limit is non zero}

A priori this depends (of course on M) on D, c and hL. Some natural
questions arise at this stage.

Question 3.1. Does B̃k
N converges almost everywhere ? When B̃k

N (x) con-
verges, can we prove that this limit is 0 or 1 ? Does the Bergman kernel have
a probabilistic interpretation ? What does happen on the boundary ∂NVc ?
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Definition 3.2. We set

NV1
c = {x ∈M : for all k >> 0 B̃h(x) =

|sx(x)|2h
||sx||2h

, with
∣∣∣ sup

p
|sx(p)|2h − |sx(x)|2h

∣∣∣ < ε(k),

lim
k→∞

ε(k) = 0}

Remark 3.2. This set depends on D, c and hL. It is closed2.

Definition 3.3. We set

NV2
c =

{
x ∈M, s.t. ∃hD ∈Met∞(O(D)),

ω + i∂∂̄ log |sD|2chD
> 0

|sD|hD
attains its maximum at x

}

Remark 3.3. This set depends on D, c and hL. It is open because around
x ∈ NV2

c , if one sets some coordinates z, |sD|2chD
e−ε log(1+|z−x|2) admits its

maximum on a small ball around x and still

ω + i∂∂̄
(
log

(|sD|2chD
− ε log(1 + |z − x|2))) > 0

for ε small enough.

Remark 3.4. Clearly NV2
c is non empty. This will show later that NV1

c is
not empty too3.

3.2 First term of the asymptotic formula for the Bergman
kernel on NV2

c

We aim to show in this section the following result.

Theorem 1. For all compact subset K ⊂ NV2
c , there exists k0 > 0 such

that for all points p ∈ K and k > k0, one can construct at p a section sk
satisfying the following properties4:

• sk ∈ H0(Lk − ckD), ||sk||hk
(p) = 1,

• locally at p, sk(z) = λ0(1 +O(|z|2)) (
1 +O

(
1
k2l

))
e⊗k for any l ≥ 0,

2We can think of that space as the set of points where the representing section for the
Bergman kernel at x has its maximum at x′ with x′ very close to x.

3We can think of NV2
c as an open bounded part of the “anti-Kähler” cone depending

on a point of M or a condition on all the positive curvatures for L− cD.
4as expected these sections do not depend on hD. Note that for the applications we

will just need l = 1.
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• ∫
M\B(p,log(k)/

√
k) |sk|2hk

= O
(

1
k2l

)
, and

λ−2
0 =

∫

B(p, log k√
k

)
e−kKp(z)dV

Essentially, we use Tian’s idea of constructing peak sections. Remark
that here the problem is not anymore local in nature because of the exis-
tence of the divisor D.

Let’s fix some notations. Define η ∈ C2(R+, [0, 1]) a cut-off function
with η(r) = 1 for 0 ≤ r ≤ rminη , η(r) = 0 for r ≥ 1. The choice of rminη will
be made clear during the proof. On a trivialisation around x ∈ M we can
write hkL(., .) = e−kφ(x)|.|0 where φ is psh (will be the potential of our csck
metric later). We choose a point p ∈ NV2

c , call hD the associated metric
and assume that for the defining section, one has |sD|hD

(p) = 1. Finally
B(x, r) will denote a geodesic ball of radius r around the point x ∈M .

Now one can define a Kähler potential5 Kp(z) for ω which has locally the
following Taylor expansion around p (Böchner holomorphic coordinates):

Kp(z) = |z|2 − 1
4
Rij̄kl̄ziz̄jzkz̄l +O(|z|5)

Around p, consider e holomorphic canonical section of L with hL(e, e) =
e−Kp(z).

Let’s begin the proof of the theorem by considering p ∈ NV2
c and hD

the associated metric on O(D), i.e for which |sD|hD
has its maximum at p

and value 1. Consider the smooth section

σ = η

(
k|z|2

log(k)2

)
e⊗

k ∈ C∞(M,Lk)

Define the singular metrics

h̃ :=
hL

|sD|2chD

and

h̃′k := h̃⊗ke
−η
„

1

rmin
η

k|z|2
log(k)2

«
log

„
rmin
η

k|z|2
log(k)2

«(n+2)

A computation [Ti] shows that for k sufficiently large, the curvature of h̃′k is

strictly positive, i.e if we set ψ = η
(

1
rmin
η

k|z|2
log(k)2

)
log

(
1

rmin
η

k|z|2
log(k)2

)(n+2)
then

√−1∂∂̄ψ ≥ − Ck
log(k)(ω +

√−1∂∂̄ log |sD|2chD
).

5In fact we just need for the following computations the first term of the Taylor ex-
pansion.
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Remark 3.5. The weight ψ is to ensure that the section we are going to
build later vanishes at p, and thus is not going to destroy the peak of σ at p.
In fact the term

√−1∂∂̄ψ is going to be bounded independentely of k.

Now, αk = ∂̄σ is a smooth (0,1)-form with value in Lk.

Lemma 3.1. One has the estimate6

||αk||2h̃′k = O

(
e−δ log(k)2 1

kn−1

)
,

for a certain constant δ > 0.

Proof. We denote U(p, k) = B
(
p, log(k)√

k

)
\ B

(
p, rminη

log(k)√
k

)
. To get an

upper bound of ||αk||2h̃′k , one has to control

∫

M

∣∣∣∂̄η
(

k|z|2
log(k)2

) ∣∣∣
2
e−kKp(z)e−ψ

1
|sD|2ckhD

dV

≤cc′η
∫

U(p,k)

∣∣∣η′
(

k|z|2
log(k)2

) ∣∣∣
2 k2
log(k)4

|z| 1
|sD|2kchD

e−kKp(z)dV

since ψ(z) = 0 for |z| ≥ rminη
log(k)√

k
. Note that we have |z| ≤ log(k)2

k for
z ∈ U(p, k). Using the fact that |sD|hD

has its maximum at p with value
1, one gets that that there exists a constant chD

> 0 depending on the
curvature of hD such that for all z ∈ U(p, k),

|sD|2chD
(z) ≥ (

1− c(hD,sD)|z|2
)

+O(|z|3)

≥
(

1− c(hD,sD)
log(k)2

k

)(
1 +O

(
log(k)3

k3/2

))

and we notice that this constant c(hD,sD) is stricly less than 1 because√−1∂∂̄Kp(z) +
√−1∂∂̄ log |sD|2chD

> 0. Thus we get for a certain constant
C1 independent of k,

1
|sD|2kchD

(z)
≤ C1e

c′ log(k)2

for all point z ∈ B(p, log(k)√
k

) with 1 > c′ > 0 independant of k. Hence, one
just needs to evaluate

ec
′ log(k)2

∫

U(p,k)

k

log(k)2
e−kKp(z)dV

≤ec′ log(k)2 k

log(k)2

(
log(k)2

k

)n

e−k(r
min
η )2 log(k)2

k

≤Ce(c′−(rmin
η )2) log(k)2

(
log(k)2

k

)n−1

6one has to keep in mind that ||αk|| controls the defect for σ to be holomorphic.
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and we can choose rminη such that rminη > c′. This ensures that we get the
expected inequality.

Corollary 3.1. For any l ≥ 0, one has

||αk||2h̃′k = O

(
1
kl

)
.

Now, we can apply L2-Hörmander estimates with respect to the metric
h̃′k. From [De1] one gets the existence of a section uk of Lk such that

∂̄uk = αk

||uk||h̃′k ≤ C

k
||αk||h̃′k < +∞

The choice of h̃′k forces uk to vanish at p and D at order kc, and moreover
from the lemma, ∫

M
|uk|2h̃′k = O

(
1

kn+2

)
.

Consequently |uk| = O(|z|2) on B(p, log k/
√
k). Of course, we also have

||uk||h ≤ ||uk||h̃ ≤ ||uk||h̃′ < +∞7. Define

σ̃ = σ − uk,

which is holomorphic, vanishes on D at order kc and satisfies |σ̃(p)|hk
= 1.

We know from [Ru] the following expansions when k tends to infinity:

Lemma 3.2.∫

BCn (0,log k/
√
k)
|zp11 ..z

pn
n |2e−k|z|

2
dz ∧ dz̄ = (

π

k
)n
p1!...pn!
kp1+..+pn

+O

(
1
k2p′

)

for any p′ > p1 + ...+ pn.

With the two previous lemmas, we get

||σ̃||2hk
=

∫

M

∣∣∣η
(

k|z|2
log(k)2

) ∣∣∣
2
e−kKp(z)dV

− 2Re
(∫

M
〈η

(
k|z|2

log(k)2

)
e⊗k , uk〉hL

dV

)
+ ||uk||2hk

Now, from last corollary, ||uk||2hk
≤ ||uk||2h̃′k = O

(
1
kl

)
for any l ≥ 0. More-

over, by Cauchy-Schwartz

∣∣∣
∫

M
〈η

(
k|z|2

log(k)2

)
e⊗k , uk〉hL

dV
∣∣∣ ≤

(∫

B(p, log k√
k

)
e−k|z|

2
dV

)1/2

||uk||h̃′k
(

1 +O

(
1
k

))

= O

(
1
kl

)

7This is here where we use the fact that |sD|hD has its global maximum at p.
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for any l ≥ 0.
At the point p, we have constructed a global holomorphic section σ̃

vanishing at order kc on D and for any l ≥ 0,8

|σ̃|2h(p)
||σ̃||2h

=
1∫

B(p, log k√
k

)
e−kKp(z)dV

+O

(
1
kl

)
= kn +O(kn−1)

Hence, we get that the first term of the asymptotic of is bounded from below
by kn, i.e that at p ∈ NV2

c ,

B̃k(p) = kn +O(kn−1).

3.3 Second term of the asymptotic formula for the Bergman
kernel

With the same reasoning as before but using the weight

ψP = (n+ 2p′)η
(

1
rminη

k|z|2
log(k)2

)
log

(
1

rminη

k|z|2
log(k)2

)
,

one can construct global sections sk,P satisfying the following properties:

• sk,P ∈ H0(Lk − ckD), ||sk,P ||h(p) = 1,

• locally at p, sk(z) = λP (zp11 ..z
pn
n + O(|z|2p′))e⊗k

(
1 +O

(
1
k2p′

))
for

any p′ > p1 + ...+ pn and the pi are integers,

• ∫
M\B(p,log(k)/

√
k) |sk|2 = O(1/k2p′) and

λ−2
P =

∫

B(p, log k√
k

)
|zp11 ..z

pn
n |2e−kKp(z)dV

Therefore, the second term of the asymptotic can be computed exactly
by following the lines9 of Tian’s paper [Ti, Lu] for a point p ∈ NV2

c , and at
p ∈ NV2

c ,

B̃h(p) = kn +
kn−1

2
Scal(h)(p) +O(kn−2).

Finally, we note that our construction gives a section that has at p ∈ NV2
c

the property to be close to its maximum, i.e

NV2
c ⊂ NV1

c .

8The term in kn−1 appears because of the taylor expansion of Kp(z) and det(gij).
9In Tian’s paper, even if it is not said, it is sufficient to use Thm 1 to get the second

term because of the Riemann Roch formula, but in our case we don’t know the volume of
NV2

c yet.
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Indeed,
|σ̃(p)|2hk

||σ||2hk

= kn(1 + O(kn−1)) and we know (for instance from the

asymptotic on the classical Bergman kernel) that for any holomorphic sec-

tion s ∈ H0(Lk) with ||s||hk
= 1, sup |s|2hk

≤ kn + O(kn−1), so
∣∣∣ |σ̃(p)|2hk

||σ||2hk

−
supx∈M |σ̃(x)|2hk

||σ||2hk

∣∣∣ = O(1/k).

Note that for a point p in NV1
c and a sequence of peakes sections sk at

p constructed as before, if the sequence |sk|2/khk
converges to a smooth limit

which is positive on M \D, then it gives a smooth metric
(
|sk|2hk

|sD|2kc
0

)1/k

〈, 〉0
on O(D) (for which the norm of sD takes its maximum at x) and since the
log of the norm of a holomorphic section is psh, p belongs to NV2

c,hD

10.
Hence, we have seen that on compact subsets of NV2

c , we can get by the
procedure developped in [Ti, Ru] an asymptotic expansion of B̃k in the C∞

topology.

4 The 0-1 law for the Bergman function B̃k

N

4.1 A uniqueness result for peaked sections

We aim to show that if one has a section S ∈ H0(M,Lk−ckD) with a “peak”
at a point p, and with L2 norm 1, then the L2 norm of S is concentrated
around p. This is completely elementary.

Lemma 4.1. Suppose sk ∈ H0(M,Lk−ckD) is the peak section at p ∈ NV2
c

constructed as above in Theorem 1. Let s0 be another section of Lk such
that s0 vanishes at p. Then

∫

M
〈sk, s0〉hk

= O

(
1
k

)
||s0||hk

Proof. See [Ru].

Suppose that |S(p)|2hk
= kn +O(kn−1). It is clear from Lemma 3.2 that

∫

M
〈sk − S, S〉hk

=
∫

M
O(kn−1)O(|z|2)e−k|z|2dV = O(1/k).

Using previous lemma with s0 = sk − S one gets

Proposition 4.1. Assume that S ∈ H0(M,Lk − ckD) with ||S||hk
= 1

satisfies |S(p)|2hk
= kn +O(kn−1) for p ∈ NV2

c . Then

||S − sk||2hk
= O(1/k)

for sk the peaked section constructed at p as before.
10One expects at this stage NV2

c = NV1
c as we shall prove later.
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Since we know that at each point of the non-vanishing set, we can con-
struct a peak section, we obtain:

Corollary 4.1. Let p be a point in NV2
c . Then the representing section

Sc′,p at p for B̃k,c′ converges in L2 norm to the representing section Sc,p.

4.2 Some natural inclusions

Since supM |S|2hk
≥ 1/V for a section S ∈ H0(Lk) with L2 norm equal to 1,

one has directly
NV1

c ⊂ NVc

and from last section we know NV2
c ⊂ NV1

c . Also, it is clear that

NV1
0 = NV2

0 = NV0 = M

and
NV1

ε(L,D) = NV2
ε(L,D) = ∅.

From another part, it is clear that for c′ > c,

NV2
c′ ⊂ NV2

c

Moreover, if ω+ i∂∂̄ log |sD|2chD
> 0 then we still have ω+ i∂∂̄ log |sD|2c′hD

> 0
for c < c′ < c+ ε for ε small enough one gets that

∪c′>cNV2
c′ = NV2

c .

Proposition 4.2. One has ∩c′<cNV2
c′ = NV2

c .

Proof. The only difficult part is to show that NV2
c ⊂ ∩c′<cNV2

c′ . Suppose
that there exists a metric h∞ ∈ Met(O(D)) non necessarily smooth such
that ω+ i∂∂̄ log |sD|2ch∞ ≥ 0 with |sD|h∞ has its maximum at x. Then, since
ω > 0, for c′ < c one gets directly

ω + i∂∂̄ log |sD|2c′h∞ = i∂∂̄
(
φL + log |sD|2c′h∞

)
> 0.

Now, using [De1] one can approximate locally (i.e we use a finite covering
Ωi of M by pseudoconvex open sets) the psh function φL + log |sD|2c′h∞ using
a sequence of psh function φm,i = 1

2m log
∑

j |σj |2 for (σj)j a Hilbert basis of

sections of Lk in L2
Ωi

(
mφL +m log |sD|2c′h∞

)
. Note that on compact subsets

of Ωi, the boundness from above of φL + log |sD|2c′h∞ implies the uniform
convergence of

∑ |σj |2 on Ωi
11. Finally, since φL is smooth, one gets that

φm,i−φL converges uniformly and thus has its maximum at x. The pointwise
convergence on the whole manifold of the φm,i implies that this maximum
is global.

11By mean value inequality, the L2 topology is here stronger than topology of uniform
convergence on compact subsets.
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Corollary 4.2. If c′ < c, then

NV2
c ⊂ NV2

c′ .

Corollary 4.3. One has
NV1

c = NV2
c .

4.3 Behavior of the Bergman function B̃k

N

Fix ε(L,D) > c > 0. We know that for all p0 ∈ M and k sufficiently

large, B̃k,c,D

N (p0) ∈ [0, 1]. Suppose that B̃k,c,D

N (p) does admit a subsequence
converging to a constant δ > 0 for a point p ∈M \NV2

c . We will show that
we obtain a contradiction by proving that we can construct a peaked section
at p and thus p must belong to NV2

c .
Indeed, for this subsequence γ(k) ∈ N, the representing sections sγ(k),p

at p are such that |sγ(k),p|hγ(k)
attain its maximum at pγ(k) ∈ NV2

c .
12

From Corollary 4.2, there exists c′ < c sufficiently close to c, such that

pγ(k) ∈ NV2
c′ and p ∈M \ NV2

c′ , (1)

∃ a subsequence γ′(k) ofγ(k), s.t lim
k→∞

pγ′(k) = p∞ ∈ NV2
c′ . (2)

The sections sγ′(k),p are also vanishing at order γ′(k)c′ and –up to consider-
ing a subsequence– we can assume that |sγ′(k),p|hγ′(k)

(pγ′(k)) = δ′γ′(k)n(1 +
O(1/k)) ≥ δγ′(k)n. It means that sγ′(k),p has another peak at pγ′(k). From
another hand, there exists a peaked section sγ′(k),pγ′(k)

at pγ′(k) such that

S = sγ′(k),p − δ′sγ′(k),pγ′(k)

vanishes at pγ′(k) and has pointwise norm δγ′(k)n at p. Indeed, we construct
this section sγ′(k),pγ′(k)

as in the first paragraph but with the weight

ψ1 = η

(
1

rminη

k|z − pγ′(k)|2
log(k)2

)
log

(
1

rminη

k|z − pγ′(k)|2
log(k)2

)(n+2)

×η1

(
2
k|z − p|2
log(k)2

)
log

(
2
k|z − p|2
log(k)2

)(n+2)

12There is a subtlety here since |sγ(k),p|hγ(k) could vanish outside D. But we can add
a cut-off function 0 ≤ η̃ ≤ O(1/k) such that η̃ is non zero where |sγ(k),p|hγ(k) vanishes
on M \ D and η̃ vanishes on D and around pγ(k). If we choose η̃ carefully, i.e bound
its derivatives, we can assume that ω +

√−1∂∂̄ log(|sγ(k),p|2hγ(k)
+ η̃) > 0 and by con-

struction
|sγ(k),p|2hγ(k)

+η̃

|sD|2kc
0

〈, 〉0 gives a well defined metric on O(D). Finally, the function

|sγ(k),p|2hγ(k)
+ η̃ has still its maximum at pγ(k), and thus, by definition, pγ(k) ∈ NV2

c

12



where η1 ∈ C2(R+, [0, 1]) is a cut-off function with η1(r) = 0 for r ≤ 1/2
or r ≥ 1. This weight will force the constructed section to vanish also at p.
Note that this is possible since we have the convergence of pγ′(k) in NV2

c′ .
From Proposition 4.1, the section S satisfies

||S||hγ′(k)
< ||sγ′(k),p||hγ′(k)

− δ′

2
+O

(
1

γ′(k)

)

Hence, there exists a constant λ > 1 such that ||λS||hγ′(k)
= 1 and also

|λS(p)|hγ′(k)
> δγ′(k)n. Of course, we can assume that |S(p)|hγ′(k)

is the

maximum of the function |S|hγ′(k)
on M \ NVc′2 13, and even on M if we do

the same reasoning for the (finite number14 of) points where this function
has a local maximum on NV2

c′ bigger than δγ′(k)n. Hence, by definition, p
belongs to NV1

c′ = NV2
c′ and we get a contradiction with condition (1).

Finally, we have proved, using the previous result of the asymptotic of
the Bergman kernel on the non vanishing set, that

Theorem 2 (0–1 law). If p ∈ NV2
c , then limk→ B̃k

N (p) = 1. If p ∈M \NV2
c ,

then limk→ B̃k
N (p) = 0.

By integration of B̃k
N and using Riemann-Roch formula, we know that

V ol(NV2
c) + lim

k→∞

∫

∂NV2
c

B̃k
N

= V ol(L− cD)

which leads to

V ol(NV2
c) + V ol(∂NV2

c) ≥ V ol(L− cD) ≥ V ol(NV2
c)

Now, using Proposition 4.2, we know that

V ol(NV2
c) ≤ V ol(NV2

c′) ≤ V ol(L− c′D)

for all c′ < c. The function c′ 7→ V ol(L− c′D) is continuous, so we get that

V ol(NV2
c) ≤ V ol(L− cD)

and consequently
V ol(NV2

c) = V ol(L− cD).

Now, from Corollary 4.2, V ol(NV2
c) ≥ V ol(NV2

c′) ≥ V ol(L − c′D) for all
c′ > c and by continuity, V ol(NV2

c) ≥ V ol(L− cD).
Finally, this gives

13just because we can assume that p is the point where the original representing section

sγ(k),p has its maximum on M \ NV2
c′

14for each point, we substract δ/2 from the L2 norm.
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Corollary 4.4. The boundary of NV2
c is Lebesgue negligible. The volume

of NV2
c with respect to ω is the algebro-geometric quantity V ol(L− cD).

As we mentioned previously, note that NV2
c depends clearly on hL. This

leads to
NV2

c(hL) = NV2
c/r(h

⊗r
L )

and thus

Corollary 4.5. For any z ∈ M \ D and 0 ≤ c < ε(L,D), there exists a

metric hL on L such that limk→
B̃hL,c(z)

kn = 1 or equivalently, x ∈ NV2
c(hL).

Remark 4.1. Some information for the full Bergman kernel B̃k(x, y) on
M ×M can be deduced from our work.

4.4 The Bergman exhaustion function

Using the non-vanishing set, we introduce now a function that measures the
distance of a point of M to the divisor.

Definition 4.1. Define for a point p ∈M

ρD(p) = sup
c≥0

{p ∈ NV2
c}

Note that this function is also dependent on ω.

Proposition 4.3. The function p→ ExhD(p) is a continuous function.

Proof. We note that ρD(p) ≤ c is equivalent to p ∈ ∩c′<cNV2
c′ which is

closed from Proposition 4.2. Now, if ρD(p) > c, there exists c′ > c such
that p ∈ NV2

c′ and thus p ∈ ∪c′>cNV2
c′ . If p ∈ ∪c′>cNV2

c′ , then ρD(p) > c.
Hence, ρD(p) > c is equivalent to p ∈ ∪c′>cNV2

c′ which is open.

Lemma 4.2. We have

ρD(p) = sup
c≥0

lim sup
k→∞

cB̃hL,k.c(p)
kn

= lim sup
k→∞

sup
c≥0

cB̃hL,k.c(p)
kn

.

Proof. The first equality is clear from Theorem 2 and the fact that
cB̃hL,k.c(p)

kn

is bounded in c and k. The second equality is also a consequence a Theorem
2.

Proposition 4.4. Let p ∈ M \D and 0 < c < ε(L,D). Assume that for a
fixed k0 ≥ 1,

B̃hL,k0.c(p) ≥ κ.

Then p ∈ NV2
cκ/kn

0
.

14



Sketch of the proof. One aims to show that ρD(p) ≥ cκ. By assump-
tion, note that k0c ≥ 1 and wlog c > ρD(p). With Lemma 4.2, it turns out
that it is sufficient to prove that if cmax(k0) < c is the maximum of c′ such
that k0c

′ ∈ N∗ and c′ < ρD(p), then

cmax(k0)

B̃cmax(k0),k0(p)

kn0
≥

(
cmax(k0) +

q

k0

) B̃cmax(k0)+
q

k0

,k0(p)

kn0

for any integer 1 ≤ q ≤ [k0(ε(L,D)− cmax(k0))]15. Therefore, it is sufficient
to prove that

cmax(k0)

(
B̃cmax(k0),k0(p)− B̃cmax(k0)+1/k0

,k0(p)
)
≥ q

k0
B̃c

max(k0)+ 1
k0

,k0(p).

Now, for at p, we know that we can build a peak section vanishing at order
cmax(k0)k0 on D since cmax(k0) < ρD(p) and because of the definition of cmax,
we know that this section vanishes exactly at order cmax(k0)k0 and not more.
Hence,

(
B̃cmax(k0),k0(p)− B̃cmax(k0)+1/k0

,k0(p)
)

= kn0 (1 + δp/k0).

From the result of Catlin [Ca], we know16 that δp is going to be bounded
(from below) on M , say by the constant δ. On the other hand, we need to
study the behavior of B̃c

max(k0)+ 1
k0

,k0(p) when k0 is not too large. Let’s call

Γ(c) = {hD ∈Met∞(O(D)), ω + i∂∂̄ log |sD|2chD
> 0}. At p, we know that

sup
hD∈Γ(cmax(k0)+q/k0)

|sD(p)|2cmax(k0)+
2q
k0

hD
< 1

for maxM |sD|hD
= 1 and we call γ(p, k0, q) this value. Hence Hörmander’s

estimates gives us a “non-peak” section s ∈ H0(Lk0 − (cmax(k0)k0 + q)D)
such that |s(p)|2 ≤ kn0 γ(p, k0, q)k0 and we can assume wlog that all the other
sections of the basis vanish at p. In fact we expect a uniform exponential
decrease, i.e

Claim. γ(p, k0, q)k0 ≤
(
1− A+q

k0

)k0
with A ≥ 0 independent of p and

k0 > k′0 where k′0 is independant of p.

Let’s assume the claim proved. Then

q

k0
B̃c

max(k0)+ 1
k0

,k0(p) ≤
q

k0

(
1− A+ q

k0

)k0

kn0 ≤
q

eq
e−Akn−1

0

15The result is clear when k0 tends to infinity, i.e the function c1NV2
ρD(p)

is decreasing

for c > ρD(p). In fact we expect an exponential decrease of the Bergman kernel at a finite
k0 for c > ρD(p)

16The terms of the asymptotic are continuous functions
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Now for k0 sufficiently large (and this can be done indepentely of p) we
get

cmax(k0)k
n
0 (1 + δ/k0) ≥ q

eq
e−Akn−1

0

for any 1 ≤ q ≤ [k0(ε(L,D)− cmax(k0))].

Corollary 4.6. There exists k1 ∈ N depending on (L,M,D, hL) such that
for all p ∈M ,

ρD(p) = sup
k≥k1

sup
c≥0

cB̃hL,k.c(p)
kn

.

The function ExhNV2
c
(p) = − log(ρD(p) − c) defined on NV2

c is a con-
tinuous exhaustion function.

4.5 Relation with Lelong numbers

For a Kähler form ω, we consider the space of strictly ω-plurisubharmonic
functions

Ka[ω] = {φ ∈ L1(M) : ω +
√−1∂∂̄φ > 0},

Recall the Lelong number for a psh function φ at a point x0,

ν(φ, x) = lim inf
x→x0

log φ(x)
log |x− x0| = lim

r→0+

supB(x0,r) φ(x)
log r

and define ν(φ,D) = infx∈D ν(φ, x). Then, one can consider the canonical
equilibrium metric with poles on D of order c (see [Berm, Section 4.1]) given
by

φequil,D,c(x) = sup
ψ∈Ka[ω]

{ψ(x) : ν(ψ,D) ≥ c, ψ ≤ − log hL}

Then it is straightforward to check the equalities

NV2
c = {x ∈M : ∃ψ ∈ Ka[ω], ν(ψ,D) ≥ c, and sup

M
ψ = ψ(x)}

= {φequil,D,c = − log hL}

5 Some examples

5.1 The case of P1

Let’s consider the elementary case of P1 without a point. Choose for φ the
potential of the Fubini-Study metric. Then a ’limit’ -and naive- choice for
the metric on hD leads to consider

|z|2c
1 + |z|2

16



which has its maximum on the circle of radius
√

c
1−c . Hence one can prove

thatNV2
c = {z : |z|2 > c/(1−c)}. Note that in that case, we have an explicit

formula. At the point z0, the defining section for the Bergman kernel is

sz0(z) =
k∑

i=kc

Cik
zi

zk−i0

and hence

B̃P1,hFS ,k,c(z) =
|∑k

i=kcC
i
k

1
zk−2i |2

(1 + |z|2)k ∑k
i=kcC

i
k

1
z2k−2i

.

We have computed the following expansion for P1 without 1 point (using
the coordinates x = |z|√

1+|z|2 ).

Proposition 5.1.

B̃k,c(z)− 1
2

(
B̃k,c+ 1

k
− B̃k,c

)
(z) = k1x>c + 1x>c +

(
c− 1

2

)
δ(x− c)

+
c− c2

2
δ′(x− c) +O(1/k)

where δ is the Dirac function and δ′ its derivative with respect to x.

Note that no higher order derivatives of the Dirac function appear. If
we call

εc(x) =
(
c− 1

2

)
δ(x− c) +

c− c2

2
δ′(x− c)

then we check that for 0 ≤ c0 ≤ ε(L,D),
∫ c0

0
εc(x)dc = 0

if x ≤ c0 or x > c0. This implies the slope-semistability inequality in that
case.

Remark 5.1. In that setting, we also get

Exh0,c(z) = − log(x− c).

For P1 without 2 points, say a, b, one can remark that

B̃2k,P1\{a,b} ≤ B̃k,P1\{a}B̃k,P1\{b}

So for c small, NV2
c(a) ∪ NV2

c(b) ⊂ NV2
c(a, b) and considering the volume,

this leads to NV2
c(a, b) = NV2

c(a) ∪NV2
c(b).
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6 Other remarks

6.1 Another point of view with singular Bergman kernels

For the singular metric h̃ := hL/|sD|2chD
, we can consider the Bergman kernel

Bsing(h̃) =
∑ |si|2h̃ where si are L2 orthonormal with respect to h̃ and dV .

It is similar to the usual Bergman kernel but for the singular metric h̃.
For any metric hD ∈Met(O(D), if one assumes |sD| ≤ 1, one gets clearly

B̃(h) ≥ |sD|2kchD
Bsing(h/|sD|2chD

)

Now, if p ∈ NV2
c and hD is the associated metric at that point, then we

have
B̃(h)(p) ≥ Bsing(h/|sD|2chD

)(p)

Now, for a local trivialisation around the point p, we can choose local
holomorphic coordinates z s.t. z(p) = 0 and such that the metric around p
is euclidean wrt z at z = 0. For the potential φ̃ of the h̃ around p, we have
φ̃ = φ0 + o(|z|2) where φ0 is a quadratic form with associated eigenvalues
λ1, ..., λn (wrt ω). For a section s ∈ H0(Lk) given by a holomorphic function
f0, one has since |f0|2 is psh,

|f0(0)|2 ≤
∫
|z|<log(k)/

√
k |f0(z)|2e−kφ0

∫
|z|<log(k)/

√
k e

−kφ0

The numerator of the RHS can be estimated from above by (1+εk)
∫
M |s|2hk

dV
as k tends to infinity with limk→∞ εk = 0. Now by assumption on p, all eigen-
values λi are positive so we have an estimate for the denominator of the RHS
of last equation, which is up to a multiplicative constant 1

knλ1...λn
+O(k−n−1).

On the other hand, as it is explained in [Bern], one can build peak sections
of Lk as does Tian in [Ti] for the singular metric h̃ ∈ Met(L) which has
positive curvature. Hence, the singular Bergman kernel is going to converge
at p towards knλ1(p)...λn(p) = kn at the first order17. On the whole mani-
fold the singular Bergman kernel converges pointwisely towards the absolute
continuous part of the current i∂∂̄φ̃.

6.2 About extending the sections

When one tries to apply L2-Hörmander estimates in our setting, it appears
that we have two natural Hilbert spaces, the space of L2 sections with respect
to h and the space of L2 sections wrt the singular metric h̃. If we consider
f a section vanishing of Lk vanishing at order a kc on D, then we can find
u1 and u2 such that ∂̄u1 = ∂̄u2 = f and for the L2 norms,

||u1||2h < c1(k)||f ||2h
||u2||2h ≤ ||u2||2h̃ < c2(k)||f ||2h̃

17One gets only the first term with this method.
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which implies that there exists a constant δk with ||u2 + δk||2h < c1||f ||2h and
u2 vanish at order kc on D. If ck is small enough with respect to 1/kn, one
could build a peak section from u2 and control completely its asymptotic.

Question 6.1. Is the constant δ given by algebraic geometry ?

The Ohsawa-Takegoshi-Manivel theorem [De1] applied at a point p ∈
NV2

c and the singular metric h̃ = hk

|sD|2kc leads directly to the existence of a

global holomorphic section S of Lk satisfying
∫

M
|S|2

h̃
knωn ≤ C(M,n)|S(p)|2

h̃

i.e S vanishes at order ck on D and since |sD|hD
(p) = 1,

B̃(p) ≥ kn

C(M,n)
.
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